EUSUSTEL – WP 3 Peter Lund, HUT

- analysis of electricity generation technologies and integration into overall generation system, with emphasis on their future potential
- technical, economic, environmental characterization of each technology
- partners:1,2,3,5,7,8,9,10

Scope of WP3

- Fossil-fuel based generation & CO₂ management
- Nuclear electricity
- Renewables, new and other technologies
- System integration (centralized & decentralized)

Questions to be addressed in WP3

 clarify the future potential of different technologies, including systems issues

through an analysis/assessment based on existing information

resulting in 1) a uniform presentation of a technology portfolio including system constraints, 2) a state-of-the-art view of the perceived progress of production technologies

- possible approach
 - uniform characterization of each technology (quantitative)
 - identify and address key systems issues (qualitative)

Questions for characterization

- 1. level of details: number of parameters, depth; confidence levels of parameters
- 2. perspective: utility, investor, policy maker, other players
- 3. framework:
 - existing and evolutionary framework (=electricity system)
 - geographical scope (nations...whole EU)
 - structure of the electricity system & electricity market (open...closed ; integrated...isolated)
- 4. time dimension (2005...**2030**...2050?) (cf 5.1)
- 5. life-cycle based, or up-front only
- 6. interfacing with the other WPs and their needs

Characterization

- Technical parameters
- Economic parameters
- Environmental parameters

Technical parameters (long-list)

- range of unit size...project size,
- conversion η , life-time
- operational time (hours of nominal power/yr)
- resource base (~potential/countrywise ?, fuel availability)
- static, dynamic and transient behavior
- technical requirements on integration
- technology specific site requirements and restrictions

Economic parameters (long-list)

 traditional life-cycle costs: investment (system=core+BOS), <u>fuel</u>, OEM, waste, dismantling

- system or electricity market costs:

- system integration costs (reserve, back-up, etc.; effect of system typology)
- cost of risks ? (market, technical, immatureness, size)
- other ?
- influence of policies & level of public support on economics & potential

Environmental parameters (long-list)

- direct GHG emissions, production based in-direct emissions (e.g. transport of fuel)
- 'intrusion' level on public (noise, appearance, disturbance, health)
- legal/societal framework, permissions, directives etc. associated with a technology

Systems issues

- Interaction of decentralized and centralized electricity systems and its influence on GHG
- Effects of the different technologies on the electric grid
- Other ?

Structure of WP 3

Task	Торіс	Lead	Deliverable
WP3.1	Fossil-based generation	2	report
3.1.1	Coal	2,10, (9)	chapter
3.1.2	Oil&gas	1, (9)	chapter
3.1.3	CHP	1,10, (9)	chapter
3.1.4	CO ₂ cap&seq	2	chapter
WP3.2	Nuclear electricity	8	report
3.2.1	Fission	8	chapter
3.2.2	Fusion	1	chapter

Task	Торіс	Lead	Deliverable
WP3.3	Renewables and other alt.	3	report
	General considerations	5,8,10	chapter
3.3.1	Wind	10	chapter
3.3.2	PV	3	chapter
3.3.3	Biomass	3,7,(9)	chapter
3.3.4	Hydro	5	chapter
3.3.5	Geothermal	5	chapter
3.3.6	Fuel cells	7	chapter
3.3.7	Hydrogen	7,1	chapter
3.3.8	Storage	5	chapter
3.3.9	Other & Speculative forms	5,3	chapter
WP3.4	System integration	3? -> 1	report
3.4.1	Integration of cent&decent	1,5,7	chapter
3.4.2	GHG emissions from inter.	1	chapter

Characterization

Technical parameters

- unit size...project size, conversion efficiency, etc.
- operational time (hours of nominal power/yr)
- resource base (~potential, fuel availability)
- technical requirements on integration
- technology specific site requirements and restrictions

Economic parameters

- traditional life-cycle cost: investment (system=core+BOS), fuel, OEM, waste, dismantling
- system integration costs associated (reserve, back-up, etc.)
- cost of risks ? (market, technical, immatureness)
- other (permissions,?

Environmental parameters

- direct GHG emissions, in-direct (e.g. transport of fuel)
- 'intrusion' level on public (noice, appearance, disturbance)
- legal/societal framework, permissions directives associated with a technology