EUSUSTEL

European Sustainable Electricity; Comprehensive Analysis of Future European Demand and Generation of European Electricity and its Security of Supply

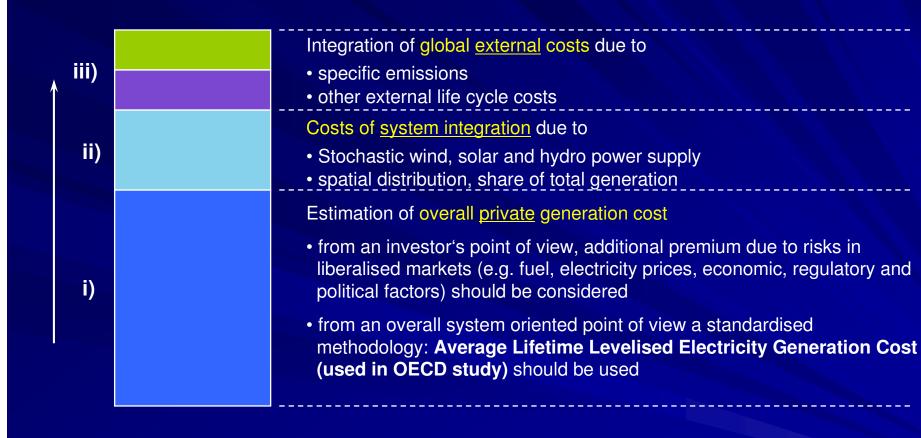
Work Package 5.1 - Static Cost Calculations

Guido Pepermans

ETE Research Center - K.U.Leuven & K.U.Leuven Energy Institute

Work Package 5

- Objective
 - Determine the total social cost for electricity generation
 - Static calculation
 - Taking into account system interactions
 - Run scenarios to determine the 'most optimal solution' for electricity provision in the EU


Description of Work Package 5.1

- Work Package 5.1
 - Determination of the overall static social cost for electricity
 - Subtask 5.1.1
 - Summarize private cost for generation technologies
 - For each generic electricity supply technology
 - For the years 2005, 2010, 2020 and 2030
 - Based on input data provided in WP 3
 - For at least two different fuel price projections
 - Subtask 5.1.2
 - Considerations on 'shadow costs' such as back-up costs, risk premium...
 - Subtask 5.1.3
 - Identification of differences in CO₂ emissions due to electricity generation
 - Depending on the different generation systems in the EU-25 countries
 - Subtask 5.1.4
 - Determination of global external costs
- Work Package 5.2
 - Comparison and evaluation of simulation models & codes and existing scenarios for electricity generation
- Work Package 5.3
 - Performing and interpretation of four (contrasting) scenarios

Static Social Cost

For determination of the overall static cost, input is needed from WP3 "Electricity generation technologies and system integration"

Subtask 5.1.1 - Private Generation Cost

Private Cost Calculation – Methodology

- Based on OECD study
 - Projected Costs of generating Electricity Update 2005
 - \blacksquare Average Lifetime Levelised Electricity Generation Cost \overline{p}
 - Solve for the price that makes costs equal to revenue over the lifetime of the project

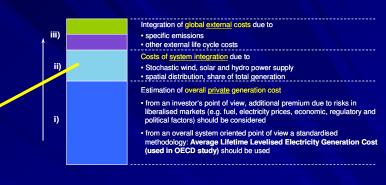
$$\sum_{t=0}^{T} \frac{\overline{p} \times E_t}{(1+r)^t} - \sum_{t=0}^{T} \frac{[I_t + M_t + F_t]}{(1+r)^t} = 0$$

$$\overline{p} = rac{\sum_{t=0}^{T} \frac{[I_t + M_t + F_t]}{(1+r)^t}}{\sum_{t=0}^{T} \frac{[E_t]}{(1+r)^t}}$$

t = Investment expenditures in the year t

 M_t = Operations and maintenance expenditures in the year t

 F_t = Fuel expenditures in the year t


 E_t = Electricity generation in the year t

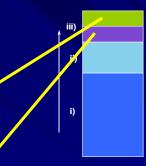
r = Discount rate

Subtask 5.1.2 – System Integration Costs

Costs of system integration due to

- stochastic wind, solar and hydro power supply
- existing electricity generation system,
- the spatial distribution of wind and hydro resources
- and the share of wind, solar and hydro of total generation
- Representative values should be based on WP 3.4

ii)


Subtask 5.1.2 – System Integration Costs

- System integration cost
 - Different types of costs/benefits
 - Capacity credits
 - Ancillary services
 - Balancing
 - Grid expansion
 - System stability
 - Cross border flows
 - See report of Work Package 3.4
 - Other relevant literature
 - Nabe, C., Kennedy, S., ETSO, Czisch, G and Ernst, B, Ostergaard, P A, Lund, H

Subtask 5.1.4 – External Costs

- Integration of global external costs due to
- specific emissions
- Stochastic wind, solar and hydro power supply
- spatial distribution, share of total generation

Estimation of overall private generation cos

- from an investor's point of view, additional premium due to risks in liberalised markets (e.g. fuel, electricity prices, economic, regulatory and political factors) should be considered
- from an overall system oriented point of view a standardised methodology: Average Lifetime Levelised Electricity Generation Cost (used in OECD study) should be used

Calculation of direct generation related externalities

- for each technology
- based on emission coefficients [t emission/kWh]
- based on cost per unit of emission [€/t emission]

Calculation of other external life cycle investment and operation costs

- for each technology and its improvement over time
- based on EU electricity generation mix
- and projected changes in generation mix to 2030

iii)

Subtask 5.1.3 – Differences In CO₂ Emissions

- Idea
 - Provide information on CO₂ emissions related to electricity generation for each country
- Essentially not a part of the overall static social cost calculations
 - Static cost calculations are technology oriented, not country-oriented
- Evaluation will be based e.g. on the country reports of WP 1

Reporting

Work Package finalized by the end of March 2006

