European Sustainable Electricity; Comprehensive Analysis of Future European Demand and Generation of Electricity and its Security of Supply

> - EUSUSTEL -Brussels January 24<sup>th</sup>, 2006

#### William D'haeseleer Leander Cosijns

#### University of Leuven Energy Institute





| 09:00 - 09.20 | Introduction<br>- Welcome and presentation of participants<br>- Presentation of Peer-review committee<br>- Objectives of EUSUSTEL           | W. Raldow and<br>D. Rossetti – 20'                     |  |  |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|--|
| 09.20 - 09.45 | <ul> <li>State of affairs of project</li> <li>Country analysis</li> </ul>                                                                   | W. D'haeseleer – 25'                                   |  |  |  |
| 09.45 – 10.35 | <ul> <li>Boundary conditions</li> <li>Concept Sustainability</li> <li>Discussion</li> </ul>                                                 | W. D'haeseleer – 10'<br>A. Voss – 10'<br>Review – 30'  |  |  |  |
| 10.35 – 11.25 | <ul> <li>Economic growth and energy services</li> <li>Demand side measures</li> <li>Discussion</li> </ul>                                   | U. Farinelli – 20'<br>Review – 30'                     |  |  |  |
| 11.25 – 11.45 | Coffee break                                                                                                                                |                                                        |  |  |  |
| 11.45 – 12.45 | <ul> <li>Technology description</li> <li>System integration</li> <li>Discussion</li> </ul>                                                  | J. Paatero – 20'<br>R. Belmans – 10'<br>Review – 30'   |  |  |  |
| 12.45 – 14.00 | Lunch                                                                                                                                       |                                                        |  |  |  |
| 14.00 – 14.50 | <ul> <li>EU energy-related legislation</li> <li>Guidelines on liberalised markets</li> <li>Discussion</li> </ul>                            | R. Belmans – 20'<br>Review – 30'                       |  |  |  |
| 14.50 – 15.30 | <ul> <li>Simulation models and existing scenarios</li> <li>Static social cost (progress)</li> <li>EU-SUSTEL Scenarios (progress)</li> </ul> | A. Voss – 20'<br>G. Pepermans – 10'<br>P. Capros – 10' |  |  |  |
| 15.30 – 16.10 | Overall Discussion                                                                                                                          | Partners and Review committee – 40'                    |  |  |  |
| 16.10 - 16.40 | <b>Conclusions</b><br>- Administrative matters<br>- Planning<br>- Summary                                                                   | W. D'haeseleer<br>M. Poireau and<br>D. Rossetti – 30'  |  |  |  |

# PARTICIPANTS

- 1. University of Leuven (K.U.Leuven) BEL
- 2. University of Stuttgart (USTUTT) DEU
- 3. Helsinki University of Technology (HUT) FIN
- 4. Nat Tech University of Athens (NTUA) GRC
- 5. Uppsala University (UU) SWE
- 6. Ass Italiana Economisti dell'Energia (AIEE) ITA
- 7. Imperial College London (Imperial) GBR
- 8. ECRIN / CEA (ECRIN) FRA
- 9. Centro ... Energeticas... (CIEMAT) ESP
- 10. Risoe Natl Laboratory (Risoe) DNK





# **Consultative Committee**

- 1. EURELECTRIC (Special focus industrial advisor)
- 2. Alstom, BNFL (manufacturers)
- 3. Tractebel Engineering (architect engr)
- 4. VGB, Erec, Eurogas, Euracoal, Foratom (umbrella)
- 5. UCTE, ETSO (electric grid)
- 6. CEU DG Energy
- 7. Regulators, IEA





# WORK PACKAGES

- 1. Country-wise analysis for EU-25
- 2. Anticipation of future electricity demand
- 3. Electricity generation technologies and system integration
- 4. Regulatory framework of energy markets
- 5. Most optimal solution for electricity provision
- 6. Compatibility check and validation
- 7. Dissemination of results
- 8. Project guidance, coordination and mgmt





#### Interaction of the work packages





#### Planning and timetable for the WPs

## WP1: Country-wise analysis EU-25

#### Horizontal overview

- Review based on energy-related and 'relevant' documents
  - International reviews (e.g. IEA)
  - European reports (e.g. European Energy and Transport; Trends to 2030)
  - National documents (e.g. reports of generators, regulators...)
  - Info gathering through local people (esp. newcomers EU)
- Outline policy orientation
- Critical analysis of national policy





## WP1: Template

#### Factual information

- Geography
- Demography
- Economy
- Energy
- Electricity
- Environment

#### Trends

Past, present, future





## WP1: Template (2)

- results of energy studies
- policy
  - energy
  - electricity
  - environment
- peculiarities





## WP1: Deliverables & result

#### 25 detailed reports

- Basic structure as in template
- Different emphases depending on country's interpretation
- General trend
  - Snapshot → be careful when extrapolating the results
  - The reports reflect the European Union as it is: a mosaic of 25 countries, with their own culture and heritage, but within a global framework
  - All countries faced with comparable challenges concerning energy, electricity and environment, and very often, comparable policies exist – within the national context – to cope with them.





## WP8.1: Scope, boundary cond. & hypo's

#### Strategic objective

 Guidelines & recommendations → affordable, clean and reliable, i.e. *'sustainable'* electricity supply system
 Measurable and verifiable objectives

Implemented into different WPs





## WP8.1: Boundary conditions

- Time horizon: 2030; reflections upon 2050
- Physical constraints
- No physical shortage of fuels (price??)
- Energy markets ~ current directives
- Accept current environmental & safety standards of EU (but not on GHG)
- Post-Kyoto: too uncertain  $\rightarrow$  hypotheses
- Existing legislation & regulation of EU & MS as basis





## WP8.1: Hypotheses

Reference scenario, sensitivity analysis...
 Varying schemes for DSM
 Post-Kyoto: -16% in 2030 (linear extrapolation)
 Nuclear policies: phase out or not?
 Fuel price assumptions
 Latest PRIMES evolution (fall 2005)





# Assumed fuel prices (PRIMES fall 2005)



ENERGY



| PRIMES prices scenario |                |       |       |       |       |       |       |       |       |  |
|------------------------|----------------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| Euro'00 per boe        | 1990           | 1995  | 2000  | 2005  | 2010  | 2015  | 2020  | 2025  | 2030  |  |
| Oil high               | 18.71          | 14.14 | 30.57 | 39.32 | 45.05 | 49.21 | 56.51 | 63.49 | 71.74 |  |
| Gas - independ.        | 7.55           | 6.95  | 14.47 | 22.07 | 25.19 | 28.28 | 30.41 | 35.12 | 40.66 |  |
|                        |                |       |       |       |       |       |       |       |       |  |
| Gas - depend.          |                |       |       | 22.07 | 26.82 | 32.55 | 38.61 | 44.33 | 53.38 |  |
| Coal high              | 8.84           | 8.72  | 8.23  | 9.69  | 9.92  | 10.34 | 11.86 | 12.57 | 14.38 |  |
| \$05 per boe           | 1990           | 1995  | 2000  | 2005  | 2010  | 2015  | 2020  | 2025  | 2030  |  |
| Oil                    | High           |       |       | 54.00 | 61.87 | 67.58 | 77.61 | 87.21 | 98.53 |  |
|                        |                |       |       |       |       |       |       |       |       |  |
|                        | Base           |       |       | 54.00 | 44.61 | 44.91 | 48.06 | 54.44 | 57.60 |  |
| Gas                    | High - indep.  |       |       | 30.31 | 34.60 | 38.84 | 41.77 | 48.23 | 55.85 |  |
|                        |                |       |       |       |       |       |       |       |       |  |
|                        | High - depend. |       |       | 30.31 | 36.84 | 44.70 | 53.03 | 60.89 | 73.31 |  |
|                        | Base           |       |       | 30.31 | 33.89 | 34.22 | 36.98 | 42.87 | 44.75 |  |
|                        |                |       |       |       |       |       |       |       |       |  |
| Coal                   | High           |       |       | 13.31 | 13.63 | 14.20 | 16.29 | 17.27 | 19.75 |  |
|                        | Base           |       |       | 13.31 | 12.54 | 13.36 | 14.07 | 14.59 | 14.95 |  |
| (ratios)               | 1990           | 1995  | 2000  | 2005  | 2010  | 2015  | 2020  | 2025  | 2030  |  |
| Oil/gas-base           | 2.48           | 2.03  | 2.11  | 1.78  | 1.32  | 1.31  | 1.30  | 1.27  | 1.29  |  |
| Oil/gas-high depend    | 2.48           | 2.03  | 2.11  | 1.78  | 1.68  | 1.51  | 1.46  | 1.43  | 1.34  |  |
| Oil/gas-high independ  | 2.48           | 2.03  | 2.11  | 1.78  | 1.79  | 1.74  | 1.86  | 1.81  | 1.76  |  |
| Coal/gas base          | 1.31           | 1.55  | 0.81  | 0.63  | 0.52  | 0.53  | 0.52  | 0.46  | 0.46  |  |
| Coal/gas high depend   | 1.31           | 1.55  | 0.81  | 0.63  | 0.48  | 0.41  | 0.36  | 0.33  | 0.28  |  |
| Coal/gas high independ | 1.31           | 1.55  | 0.81  | 0.63  | 0.51  | 0.47  | 0.46  | 0.41  | 0.37  |  |

## WP8.1: Scenarios

- Baseline scenario: High prices + no post-Kyoto limit + baseline nuclear and other options
- Idem baseline scenario, but with post Kyoto
- Idem scenario 2, but free nuclear option (no extra promotion on other options)
- Idem scenario 3, but promoted energy efficiency and distributed generation.

## More elaborated in WP5



