Appendix A

Table A1.

§ Energy:

		Biomass Gasification Combined Cycle ¹
1)	Range of unit size and project size [MW]	113 [1]
		Estimated 10-200
2)	Nominal efficiency	
	<i>i)</i> For electricity generation only [%]	37.2 [1]
		35.8 [2]
	<i>ii)</i> For combined heat and power [%]	80 – 85 [3]
3)	Efficiency at partial load	¹ / ₄ nominal: 18%
		¹ / ₂ nominal: 27%
		³ / ₄ nominal: 32%
		(1 stage axial steam
		turbine efficiencies
		[4])
4)	Flexibility towards fuel, fuel resource availability, plant	Solid biomass (e.g.
	siting and infrastructures (e.g. cooling water needs, high	woodchips, waste
	voltage, grid gas pipes, etc.)	wood, straw, etc).
		Requires cooling
		water, and proximity
		to biomass

¹ 113MW IGCC plant (gas and steam cycles), 30 year lifetime, 80% load factor for 28/30 years. Fuelled by woodchips from a biomass plantation. Further details in 1. M K Mann and P L Spath, 1997, *Life Cycle Assessment of Biomass Gasification Combined Cycle System*. National Renewable Energy Laboratory: Golden, CO, USA. http://www.nrel.gov/docs/legosti/fy98/23076.pdf

	crop/source.
5) Flexibility towards exploitation:	
i) Cold start [minutes from 0% to 90% of nominal	1 hr (100kW system)
power]	3 hrs (10MW system)
	12-48 hrs (>50MW
	system) [5]
ii) Warm/lukewarm start [minutes from 0% to 90% of nominal power]	Warm: 30 [6]
iii) Uncontrollable variation in load [% from nominal power]	+/- 3% [6]
Total energetic score	

S Ecology and resource use:

1)	Exhaust [average in lifetime, including construction &		
1)	transport]:		
	i) CO_2 [kg/kWh _{electricity}]	4.59e-2 [1]	
	<i>ii</i>) SO ₂ [kg/kWh _{electricity}]	3.02e-4 [1]	
	iii) $NO_x [kg/kWh_{electricity}]$	6.86e-4 [1]	
	iv) PM ₁₀ [kg/kWh _{electricity}]	4.16e-5 [1]	
	v) NMVOC [kg/kWh _{electricity}]	5.95e-4 [1]	
	vi) Methane [kg/kWh _{electricity}]	5.07e-6 [1]	
	vii) N_2O [kg/kWh _{electricity}]	9.54e-6 [1]	
	viii) $C_{14} [kg/kWh_{electricity}]$	n/a	
	<i>ix) Heavy metals [most important ones, g/kWh_{electricity}]</i>	2.53e-12 [1]	
2)	Thermal exhaust [TJ/GWh _{electricity}]		
	<i>i</i>) Into air	No data	
	<i>ii)</i> Into water source	No data	
3)	Liquid waste		
	i) Total liquid waste [kg/kWh _{electricity}]	No data	

	<i>ii)</i> Total nitrogen into water source [kg/kWh _{electricity}]	2.21e-11 [1]		
	iii) Total phosphor into water source [kg/kWh _{electricity}]	No data		
	<i>iv)</i> Total chlorides into water source [kg/kWh _{electricity}]	4.9e-9 [1]		
	v) Total sulfates into water source [kg/kWh _{electricity}]	8.13e-10 [1]		
	vi) Others (KMnO ₄ , iron, organic materials, solid	Ammonia: 7.45e-6		
	materials)[Separately]	Iron: 1.56e-12		
		Organic: 4.41e-11		
		Suspended: 2.4e-7 [1]		
4)	Solid waste [tons/MWh _{electricity}]			
	i) Flue dust	No data		
	ii) Slurry	No data		
	iii) Hazardous waste	0.0 [1]		
	iv) Radioactive waste	No data (assume		
		none)		
	v) Other solid waste	Total Solid Waste:	Total:	Total:
		6.3e-4 [1]		
5)	Safety and health impacts			
	<i>i)</i> Population affected by worst perceived accident	No data		
	during operation [nr of persons]			
	<i>ii)</i> Number of deaths over the fuel cycle	No data		
	[persons/MWh _{electricity}]			
	iii) Other effects			
6)	Visual impact and noise			
7)	Footprint and use of resources			
	<i>i)</i> Primary material moved for construction $[kg/kW_p of$	Concrete: 4.57e3 [1]		
	nominal power			
	<i>ii)</i> Secondary material moved for construction $[kg/kW_p]$	Steel: 1.71e3 [1]		
	of nominal power			
	iii) Main materials uses for construction (five) [kg/kW _p	1. Concrete: 4.57e3	1.	1
	of nominal power]	[1]	2.	2.
		2. Steel: 1.71e3 [1]	3.	3.

	2 Iron, 10.0 [1]	4	4
	3. Iron: 19.9 [1]	4.	4.
	4. Aluminum: 13.3	5.	5.
	[1]		
	5.		
iv) Primarily material moved for usage e.g. fuel [tons/	Woodchips: 1.03 [1]		
MWh _{electricity}]			
v) Secondary material moved for usage e.g. fuel [tons/	Water: 0.89 [1]		
$MWh_{electricity}$]			
vi) Critical materials in construction and usage	Woodchips, as above		
(materials that may become a limiting factor for the			
technology) [kg/kW _p of nominal power]			
Total ecological score			

S Economy (without subsidies, price level for 2003):

1)	Investment cost [euro/MW]	1187 [1] 113MW at	
		1990 US dollars	
		1747 [7], 100MW at	
		2003 US dollars,	
		interpolated	
		2151 [2] 100MW,	
		unpressurised. At	
		1997 US dollars	
		1922 [2] 100MW,	
		pressurized, at 1997	
		US dollars	
2)	Availability [hours per year]	8322 (95%)	
3)	Operational time [hours of nominal power/year]	7008 [1]	
4)	Reliability [%]	98% power gen	
		96% syngas	

5) Technical life span [years]	30 years [1]
6) Construction time [years]	2 years [1]
7) Fuel cost [euro/MJ]	No consistent data -
	Highly variable
8) Operation and Maintenance (O&M) cost	33 [1] 113MW, 1990
[euro/MWh _{electricity}]	US dollars
9) Waste handling and dismantling [euro/ MWh _{electricity}]	No data
Total economic score	

1.1 References

- 1. M K Mann and P L Spath, 1997, *Life Cycle Assessment of Biomass Gasification Combined Cycle System*. National Renewable Energy Laboratory: Golden, CO, USA. <u>http://www.nrel.gov/docs/legosti/fy98/23076.pdf</u>
- 2. World Bank, undated, *Biomass Gasification Technology Forecast*. <u>http://www.worldbank.org/html/fpd/em/biomass/igcc_appendix.pdf</u>
- 3. S P Babu, 2005, *Observations on the Current Status of Biomass Gasification*. IEA Bioenergy Task 33: Thermal Gasification of Biomass. p. 6.
- 4. Frey, Lako, Pittermann, Pospischil, and Reisinger, 2005, *VLEEM II Monograph on Biomass*. Verbundplan-VLEEM2. p. 47. http://www.enerdata.fr/VLEEM/PDF/30-05-05/anx3.1.pdf
- 5. G Simons, 2001, *California Renewable Technology Market and Benefits Assessment*. California Energy Commission. http://www.epriweb.com/public/00000000001001193.pdf
- 6. H Tanaka, 2004, *The Control System The Control System Applied to Negishi IGCC*. http://www.gasification.org/Docs/2004_Papers/35TANA.pdf
- 7. US Dept of Energy Efficiency and Renewable Energy, undated, *Gasification-Based Biomass*. State Energy. http://www.eere.energy.gov/state_energy/pdfs/bio_gasification.pdf