Appendix A

Table A1.

■ Energy:

	Wind turbine	Technology 2	Technology 3, etc.
1) Range of unit size and project size [MW]	0,75 to 5 MW		
2) Nominal efficiency			
i) For electricity generation only [%]			
ii) For combined heat and power [%]			
3) Efficiency at partial load			
4) Flexibility towards fuel, fuel resource availability, plant			
siting and infrastructures (e.g. cooling water needs, high			
voltage, grid gas pipes, etc.)			
5) Flexibility towards exploitation:			
i) Cold start [minutes from 0% to 90% of nominal power]			
ii) Warm/lukewarm start [minutes from 0% to 90% of nominal power]			
iii) Uncontrollable variation in load [% from nominal	100%		
power]			
Total energetic score			

• Ecology and resource use:

1) Exhaust [average in lifetime, including construction &		
transport]:		

	., 00 11 41411 1			
	i) CO ₂ [kg/kWh _{electricity}]			
	ii) SO ₂ [kg/kWh _{electricity}]			
	iii) NO_x [kg/kWh _{electricity}]			
	iv) PM ₁₀ [kg/kWh _{electricity}]			
	v) NMVOC [kg/kWh _{electricity}]			
	vi) Methane [kg/kWh _{electricity}]			
	$vii) N_2 O [kg/kWh_{electricity}]$			
	$V(iii)$ $C_{14} [kg/kWh_{electricity}]$			
	ix) Heavy metals [most important ones, g/kWh _{electricity}]			
2)	Thermal exhaust [TJ/GWh _{electricity}]			
	i) Into air			
	ii) Into water source			
3)	Liquid waste			
	i) Total liquid waste [kg/kWh _{electricity}]			
	ii) Total nitrogen into water source [kg/kWh _{electricity}]			
	iii) Total phosphor into water source [kg/kWh _{electricity}]			
	iv) Total chlorides into water source [kg/kWh _{electricity}]			
	v) Total sulfates into water source [kg/kWh _{electricity}]			
	vi) Others (KMnO ₄ , iron, organic materials, solid			
	materials)[<mark>Separately</mark>]			
4)	Solid waste [tons/MWh _{electricity}]			
	i) Flue dust			
	ii) Slurry			
	iii) Hazardous waste			
	iv) Radioactive waste			
	v) Other solid waste	Total:	Total:	Total:
5)	Safety and health impacts			
	i) Population affected by worst perceived accident			
	during operation [nr of persons]			
	ii) Number of deaths over the fuel cycle			
	[persons/MWh _{electricity}]			

6)	iii) Other effects Visual impact and noise	??		
/)	 Footprint and use of resources i) Primary material moved for construction [kg/kW_p of nominal power ii) Secondary material moved for construction [kg/kW_p of nominal power 			
	iii) Main materials uses for construction (five) [kg/kW _p of nominal power] Total weight – main materials are steel (app. 85%) and glass fiber (app. 15%)	1. 100-150 kg/kW 2. 3. 4. 5.	1. 2. 3. 4. 5.	1 2. 3. 4. 5.
	iv) Primarily material moved for usage e.g. fuel [tons/ MWh _{electricity}]			
	v) Secondary material moved for usage e.g. fuel [tons/ MWh _{electricity}]			
	vi) Critical materials in construction and usage (materials that may become a limiting factor for the technology) [kg/kW _p of nominal power]			
To	tal ecological score			

• Economy (without subsidies, price level for 2003):

1) Investment cost [euro/MW]	800-1000	
2) Availability [hours per year]		
3) Operational time [hours of nominal power/year]	2000-2500 hours	
4) Reliability [%]	97-98%	
5) Technical life span [years]	20	
6) Construction time [years]	0,5	
7) Fuel cost [euro/MJ]	0	

8) Operation and Maintenance (O&M) cost	1-1.5 c€/kWh	
[euro/MWh _{electricity}]		
9) Waste handling and dismantling [euro/ MWh _{electricity}]		
Total economic score		