Appendix A

Table A1.

Energy:

•

	Large scale hydro	Small scale hydro
	including Dam	
1) Range of unit size and project size [MW]	10-800/unit	<10/unit
2) Nominal efficiency		
i) For electricity generation only [%]	90	90
ii) For combined heat and power [%]	-	-
3) Efficiency at partial load		
4) Flexibility towards fuel, fuel resource	N.A.	N.A.
availability, plant siting and infrastructures		
(e.g. cooling water needs, high voltage, grid gas		
pipes, etc.)		
5) Flexibility towards exploitation:		
i) Cold start [minutes from 0% to 90% of nominal power]	5-10 Minutes	2-3 Minutes
ii) Warm/lukewarm start [minutes from 0% to	< 1 Minute	< 1 Minute
90% of nominal power]		
iii) Uncontrollable variation in load [%from	<5%	<5%
nominal power]		
Total energetic score		

_

Ecology and resource use:

•	
1) Exhaust [average in lifetime, including	
construction & transport]:	
i) CO_2 [kg/kWh electricity]	576-4980 (x10 ⁻⁶)
ii) SO_2 [kg/kWh electricity]	$1.08 - 1.72 (x10^{-6})$
iii) NO_x [kg/kWh electricity]	5.1-8.1 (x10-6)
iv) PM_{10} [kg/kWh electricity]	-
v) NMVOC [kg/kWh electricity]	_
vi) Methane [kg/kWh electricity]	$5.58 (x10^{-6})$
$vii)N_2O$ [kg/kWh electricity]	-
viii) C_{14} [kg/kWh electricity]	_
ix) Heavy metals [most important ones,	_
g/kWh electricity]	
2) Thermal exhaust [TJ/GWh _{electricity}]	
i) Into air	0
ii) Into water source	0
3) Liquid waste	
i) Total liquid waste [kg/kWh electricity]	_
ii) Total nitrogen into water source	$1.3-66 (x10^{-9})$
[kg/kWh electricity]	
iii) Total phosphor into water source	$0.24 (x10^{-9})$
[kg/kWh electricity]	
iv) Total chlorides into water source	-
[kg/kWh electricity]	
v) Total sulfates into water source	-
[kg/kWh electricity]	
vi) Others (Oil,)	$52-832 (x10^{-9})$
4) Solid waste [tons/MWh electricity]	
i) Flue dust	-

	ii) Slurry	-	
	iii) Hazardous waste	_	
	iv) Radioactive waste	-	
	v) Other solid waste	Total:	Total:
5)	Safety and health impacts		
	i) Population affected by worst perceived		
	accident during operation [nr of persons]		
	ii) Number of deaths over the fuel cycle	<10 - 6	
	[persons/MWh electricity]		
	iii) Other effects		
6)	Visual impact and noise	Major visual	Local visual impact,
		impact, minor	low noise
		noise	
7)	Footprint and use of resources		
	i) Primary material moved for construction		
	$[kg/kW_p]$ of nominal power		
	ii) Secondary material moved for construction		
	$[kg/kW_p]$ of nominal power		
	iii) Main materials uses for construction (five)	1.concrete/earth	1. concrete
	$[kg/kW_p of nominal power]$	2.	2.
		3.	3.
		4.	4.
		5.	5.
	iv) Primarily material moved for usage e.g. fuel [tons/ MWh _{electricity}]		
	v) Secondary material moved for usage e.g. fuel [tons/ MWh _{electricity}]		
	vi) Critical materials in construction and usage		
	(materials that may become a limiting factor		
	for the technology) [kg/kWp of nominal		

power]	
Total ecological score	

• Economy (without subsidies, price level for 2003):

-

1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1.4.4.0 (.100)
1) Investment cost [euro/MW]	$1.4 - 1.9 (x10^6)$
2) Availability [hours per year]	7000- 8000
3) Operational time [hours of nominal	7000
power/year]	
4) Reliability [%]	
5) Technical life span [years]	50+
6) Construction time [years]	5-10
7) Fuel cost [euro/MJ]	0
8) Operation and Maintenance (O&M) cost	260- 510
[euro/MWh electricity]	
9) Waste handling and dismantling [euro/	
MWh _{electricity}]	
Total economic score	